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Abstract
Cylindrical-shell electrets with radially-symmetric and axially-symmetric polarization are
discussed. Theoretical expressions for the electric fields of such electrets are obtained.
Possible applications of cylindrical electrets are indicated.

Introduction

Most published works on electrets deal with electrets in the shape of disks,
plane-parallel slabs, and thin films. However, electrets of other shapes may be
more appropriate for various experimental and theoretical studies. Spherical-
shell electrets! were recently discussed and studied by Jefimenko and Sun
(1972). The purpose of the present paper is to provide basic electric field data
on cylindrical-shell electrets.

Theoretical

Consider a cylindrical-shell electret placed between two grounded conducting
shields coaxial with the electret (Fig. 1). Let the electric field in the space
between the inner shield and the electret be E,, the electric field in the electret
be E,, and the electric field in the space between the electret and the outer
shield be E;. We are interested in expressing E;, E;, and E3 as functions of
characteristic geometrical and electrical parameters of the system. For a suffi-
ciently long electret (such that the end effects of the system may be neglected)
this can be done as follows.

Let the radii of the inner shield, inner electret surface, outer electret surface,
and outer shield be a, b, ¢, and d, respectively. Since the shields are at the same
potential, we have

I2E o + (2 E,dT + i E,+dT = 0. (1)
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FIGURE 1. Radially-symmetric system.

At the surfaces of the clectret the boundary conditions for the displacement
vector D must be satisfied. Let the real surface charge densities on the inner and
outer surfaces of the electret be 0, and 0,3, respectively. At the outer surface
we then have

(53 - 52)'Fu = 623, r=c, (2)
and at the inner surface we have
(D, = By)er, = 6459 r = b, (3)

where 1, is the radial unit vector, and the subscripts on the D’s correspond to
those on the E’s. -

The displacement vector inside the electret, D, , may be expressed in terms of
the field vector E,; and the polarization vector P of the electret as

D, =¢ E, +P, S

where €, is the permittivity of space. Since there is no polarization outside the
electret, D3 may be written as
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Dy = &,E;. (5)

Substituting Eqgs. (4) and (5) into Eq. (2), we have

o By 2)'ru = 623 + Per o, T =g (6)

The electret polarization P may be assumed to be the sum of an induced pelari-
zation P; (function of E;) and a remanent polarization P, (independent of E; ).
For P; we have

ﬁi = F.o(a— l)E2’ (?)

where € is the permittivity of the electret. Assuming that the electret has been
formed in a radially symmetric forming field (or otherwise possesses a radially
symmetric remanent polarization), we can write for P,

Pr=

H o

T, (8)

where p is a constant. The total polarization in the electret is then

_-2... _ -
P-—rru+2°(£ l)E2 ’ (9)

which, with Eq. (6), yields

P
£°(E3 - &Ey) = 623 * 5 T = c, (10)

where we took into account the assumed absence of edge effects and the radial
symmetry of the system under consideration in eliminating r,, on the left side of
the equation.

A similar calculation employing Eq. (3) vields for the inner surface of the
electret

ao(aE2 -E) =6

’ r = b. (11)

ol'o

12

Combining Egs. (1), (10), and (11) and once again making use of the radial
symmetry of the system, we obtain after some elementary transformations

=

E, =

1 (12)

HL_‘W

K
& B o aalth 0B E - 37
T By =2 T E3 = r T
where the constants K1, K4, and K4 are given by
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d e d
e = o qy¢&1n o+ 1n§) +q &1n 3
1 onPele(n R+ 1n9) + 15 8]’ W)
ﬁ,Eo n g nog n g
b _ d
& = ay 1n = qo 1n =
2 " onPs (8(1n 2+ 10 %) + 15 &) i
o a n e .
qotaln-§+1n%)+qlaln§
Ky, = ’ (1%)

3 onte [e(1n% +1n d) + 1n &

where q; = En-f’(ﬁmb - p) represents the effective charge of the inner surface of
the electret, g, = 2ﬂﬂ(623c + p) represents the effective surface charge of the
outer surface of the electret, and £ is the length of the electret.

The above expressions for K’s may be considerably simplified for various
special cases. In particular, if the outer shield is in contact with the outer surface
of the electret (d = ¢), we obtain for K,

This expression can be further transformed into

L

Gy In (L =2
Kl = = L b 4 3 (l?)
L i
2n~£.c,o[1n (1+2)+ 218 (1 +4]

or

) q; ln (&
k]
20 ﬁaonnP - £ln (1 + & -oz-F)J

K, = (18)

where d; = b - a is the width of the inner gap (space between the inner shield
and the inner surface of the electret), L. = ¢ - b is the thickness of the elec-
tret, «=d,/L, and gs: ¢/b. Likewise, if the inner shield is in contact with the

inner surface of the electret (a =b), we obtain for K;

45 1n %
= orrf¢ (In €+ g1n 9
(o) b ¢

. (19)
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This expression can be further transformed into
q, 1n (1 + %)
K, = 3 (20)
3 L 95
arv L [1n (1 +§) + €ln (1 + )]

; a, 1n @
2«-35,0[1n§5 * ETE (L&Y~ r/@)] ’

(21)

where dg = d - ¢ is the width of the outer gap (space between the outer surface
of the electret and the outer shield), L and ( are as before, and = do/L-

For practical applications one usually wants to know the charges induced on
the inner and outer shields by the electret. The density of the induced charge on

the inner shield is 61= &€ ,E surface, or, according to Egs. (12) and (18)

q; 1In
L= L ; (22)
2wt a[lngb - £ln (1 + & -aja)]
The total induced charge on the inner shield is therefore
q, ln
Q = : ; (23)
lngp - &ln (1 +a¢.-otsy )
This charge has its maximum value
Qi max = %1 (2k)

when the radius of the inner shield is equal to the radius of the inner surface of
the electret(d; = 0, and ot = 0 in this case). Let us define the “reduced charge”

Q? as

Q
b i
" . W (25)
L9 pax
From Eqs. (23) and (24) we then have
Q% = in Q . (26)

lnfb - €1n (1 + o(-ocss)
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Let now the inner shield, rather than the outer shield be in contact with the
electret. As it follows from Eqs. (12) and (21) by a reasoning similar to that used
in deriving Eq. (23), the charge induced on the outer shield is then

q, 1n ®
QO = [ (22)
lnP+ ¢ 1n {l+y-r/P)

This charge has its maximum value
Q% max = 9o (28)

when the radius of the outer shield is equal to the radius of the outer surface of

the electret (a_ = 0, and ¥ =0 in this case). Let us define the “reduced charge”

Qg as
Q
b4 o)
Q. =, (29)
9 QO max

From Egs. (27) and (28) we then have

& _ In (b
© ln<5+ﬁln (l+b’-a"/?)

Q . (30)

In a similar manner one can define “reduced electric fields” Ef and Eg (for

example, &y is the field at the surface of the inner shield of a given radius a
divided by the field at the surface of the inner shield of radius b). As can be
easily seen

Bf =gl (3D
and
Eﬁ = Qg &, (32)

Theoretical curves for Q?_ and E? representing Egs. (26) and (31) are shown in
Fig. 2 for an electret of dielectric constant ¢ = 2.5, b = 2,5% cm, and ¢ = 3.81 (p=1.5),
which are the parameters of the electrets normally used in our laboratory.

. & & .
Theoretical curves for 9, and E_ representing Eqgs. (30) and (32) for the same

electret are shown in Fig. 3.
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FIGURE 2. Reduced-charge and reduced-field curves for the inner shield.

FIGURE 3. Reduced-charge and reduced-field curves for the outer shield.
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The system shown in Fig. 1 was assumed to contain a radially-symmetric
electret. Suppose now that this electret is replaced with an electret made of two
halves of opposite polarity as shown in Fig. 4. The electric fields of such an
axially-symmetric system can be found as follows.

Inner shield

Symmetry
axis

Outer shield -~

FIGURE 4. Axially-symmetric system.

Electret

Let the potentials in the inner gap, in the electret, and in the outer gap

be (p1s $ 5> 20d @3 respectively. From the symmetry of the system it follows
that each of these potentials is of the form

[=«]
L? = nz_l{Anr“ + Bnr““)cos né, (33)

where A, and B, are constants, n is an integer, and r and f are cylindrical
coordinates as shown in Fig. 4. The constants A, and By, can be found with the
aid of the following boundary conditions:

(_571 = at r = a, (3%)
(_F3 =0 at o= g (35)
W, =¥, gt  r= by (36)
(-fz =005 at r = c, (37)

(52 - 51)';u = 6., at r = b, (38)
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and

(D3 = DE)-ru = 623 at r = c. (39)

In the system under consideration, especially interesting is the field in the
inner gap or in the central cavity (when the inner shield is absent). For the
special case when the outer shield is in contact with the electret (d = ¢) the
cocfficients Ay, and B, for the potential 91 are, as it follows from Egs.
(33)-(39) after somewhat lengthy calculations,

L
S
1K > i)
n
and
L
- _ - n.2n
Bn 15 - @ . (L1)
n
where
nT T qrgn TN 2
2n 2n 2n
= npi~1 a__ _ p o=l
K, =nb [1+¢&-(&~-1) on 2&b2“—c2“]’ (%3)

and 519: ‘512 = /b (the effective surface charge density of the inner surface
of the electret). In the first approximation

T 2
¢, = (A r + B r heos 0 = ﬁ {1 ~ 3—2) rcos @, (L)
w?_lere
Lg
fy = wpt (15)
and
2 5 p
K, =1+ 8- (g-1) 2 .pgh -3 (46)
1 02 2 o B
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[t is interesting to note that for a = O (that is, when the inner shield is absent)
Eq. (44) reduces to

L

g zKircosQ, (47)

so that the field in the central cavity is then approximately homogeneous. The
magnitude of this field is

l“éie
E, & 5 . (48)

b .
Trﬂ.o(l +£ - 25.‘02 _ ca)

Discussion

Cylindrical-shell electrets can be conveniently used as active elements for
electrostatic electrometers, motors, generators, and charge dispensers. A com-
parison of the Q‘f curve shown in Fig. 2 with the corresponding curve for spheri-
cal electrets! shows that the charge induced on the inner shield of a cylindrical
clectret decreases with increasing width of the inner gap slower than for a similar
spherical electret. Therefor cylindrical electrets are preferable to spherical ones
for devices utilizing charges induced on the inner shields. A comparison of Eq.
(48) with the corresponding equation for spherical electrets! shows that the
magnitude of the electric fields in the central cavities of cylindrical and similar
spherical electrets are practically the same. However, since the central cavity of a
cylindrical electret can be made as long as one pleases, cylindrical electrets are
also preferable to spherical ones for devices utilizing electric fields in the central
cavities of the electrets. One may expect therefore that cylindrical electrets will
be incorporated in many electret devices and will be at least as useful for practi-
cal applications as the plane and the spherical electrets.

Literature Cited

1. Jefimenko, Oleg, and Chang, N. Y. Sun. 1978. Spherical Carnauba Wax Electrets, in
Electrets, Charge Storage, and Transport in Dielectrics. The Electrochemical Society,
New York.

219 | Physics Section



