Reprinted from AMERICAN JourwaL oF Puvsics, Vol. 27, No. 5, 344-348, May, 1939
Printed in U. 5. A.

Effect of the Earth’s Magnetic Field on the Motion of an Artificial Satellite
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The effect of the earth's magnetic field on the motion of an artificial satellite moving in a
circular orbit in the plane of the magnetic equator of the earth is discussed. Approximate formu-
las for the current induced in the satellite and for the resulting induction drag are obtained.
The current in a conducting satellite of an average size at an altitude of several hundred kilo-
meters is estimated to be of the order of milliamperes. The induction drag may exceed the fric-
tion drag for satellites of large dimensions and for elongated satellites.

L INTRODUCTION

HENEVER a conductor moves through

a conducting medium in the presence of
a magnetic field that has a component normal
to the direction of the motion, an electric current
is induced in the conductor, and the conductor
experiences an induction drag.! Since the upper
ionosphere and the interplanetary space are con-
ducting media due to the presence of free elec-
trons and ions in them, it is apparent that an
electric current may be induced in a conducting
body moving in the upper ionosphere or in the
interplanetary space, and that this body may
experience an induction drag whenever it tra-
verses a magnetic field in its path.

It is the purpose of this paper to determine the
current induced in an artificial satellite by the
earth’s magnetic field, to evaluate the resulting
drag, and to investigate the effect of this drag on
the satellite’s motion for the simple case of a
spherical satellite moving without spin in a
circular orbit in the plane of the magnetic equator
of the earth. The calculations of the induced cur-
rent are carried out under the assumption of the
following idealized conditions: (1) the velocity of
the satellite is negligibly small compared with
the velocity of light; (2) the velocity of the satel-
lite is essentially constant; (3) all points of the
satellite have essentially the same velocity; (4)
the magnetic field in the satellite’s orbit is con-
stant; (5) the induced current does not affect the
magnetic field; (6) the material of the satellite
and the medium in the satellite’s orbit are linear
and isotropic conductors; (7) the conductivity of

!} See T. G. Cowling, “Solar electrodynamics,” in G. K.

Kuiper, editor, The Sun (University of Chicago Press,
Chicago, 1953).

the medium in the neighborhood of the satellite
is constant; (8) the medium in the neighborhood
of the satellite is stationary.

II. THEORY

The fundamental steady-state field equations
which are valid in the stationary as well as in the
moving nonmagnetized, nonpolarized media are
the two Maxwell's equations

VXE=0 (1)
and :
VXH=J+F"; (2)

where E, H, J, and pv are the electric field vector,
the magnetic field vector, the conduction current
density vector, and the convection current den-
sity vector, respectively, all measured in a sta-
tionary frame of reference.? If the velocity of
motion is small compared with the velocity of
light, and only an induced electric field is present,
the magnetic field vector and the conduction
current density vector may be considered the
same in both the moving and the stationary
frame of reference, while the electric field vector
in the moving frame of reference may be ex-
pressed in terms of the quantities measured in
the stationary frame of reference as

E*=E-+vxB, (3)

where the asterisk indicates the vector measured
in the moving frame of reference.

1f both the moving and the stationary media
are linear and isotropic conductors, the conduc-
tion current density is given by Ohm'’s law,

J=0E 4

2W, K. H. Panofsky and M. Phillips, Classical Elec-
tricity and Magnetism (Addison-Wesley Publishing Com-
pany, Ine., Reading, Massachusetts, 1955), p. 147.
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for the stationary medium and
J=6nE¥=0.(E4+vXB) (5)

for the moving medium, where ¢, and o, are
the conductivities of the stationary and the
moving medium, respectively,

With the current density in the moving me-
dium determined from these equations, subject
to the geometry of the problem, the magnetic
drag experienced by this medium can be evalu-
ated with the aid of the equation

F=fITXBdr, (6)

where the integral is extended over the volume
of the moving medium.

For a satellite (moving medium) moving with
a constant velocity v through a constant mag-
netic field B the problem of calculating the cur-
rent density may be reduced to an equivalent
electrostatic problem. Indeed, for the frame of
reference moving with the satellite, Eqs. (1) and
(3) give in this case,

TXE*=0, )
and, therefore,

VX (E+vXB)=VXE=0,
so that E may be expressed as
E=—Ve. (8)

Furthermore, since the convection current dis-
appears in this frame of reference, and since
vand B are constant, Egs. (2), (4) or (5), and (7)
give for both the stationary and the moving me-
dium

V-UXH*=V.-J*=V.J=—cVp=0.

Thus the potential ¢ everywhere satisfies La-
place's equation,
Vie=0, 9]

with the usual boundary conditions for the
potential,
(10)

and for the normal component of the current
density,

L= Cmy

Jns = Tumy (11)

on the boundary between the moving (m) and
the stationary medium (s). At infinity the po-
tential ¢ must be zero.®

3 This last condition would not be true if ¢ were defined
as the potential of the field E* rather than the field E.

AN ARTIFICIAL SATELLITE

III. CALCULATION OF CURRENT AND DRAG

Let a right-handed system of rectangular co-
ordinates be placed in the center of the satellite
so that the x axis lies in the direction of motion
of the satellite, while the v axis lies in the direc-
tion of the earth’s magnetic field. Let the z axis
also serve as the polar axis of spherical coordi-
nates with the same origin, so that the polar
angle 8 is the angle subtended by the z axis and
the radius vector r at the center of the satellite.
For a hollow spherical satellite with internal
radius @ and external radius b, the boundary
conditions (10) and (11) assume then the form

dee
e1=¢2, 0= —a—+vB cosf, (12a, b)
¥

atr=gq, and

d ("~} a Y3
—oo—+ 0B cosf= —o;—, (13a, b)
ar ar

2= ¢y

at r=54, where the subscripts 1, 2, and 3 refer to
the potentials and conductivities in the regions
with 7 <a, a <r <b, and > b, respectively (o is
assumed to be zero).

As one can see, the solutions to Laplace’s
equation (9) remaining finite at the center of the
satellite as well as at infinity may be written
for the three regions under consideration as

¢1=Cyr cosb, (14)
aﬂ
¢2=Cg(1+c;{—a’)?’ CUSB, (15)
[a
cosf
ey=Ci—,\ (16)
2

where Ci, Ci, Cs, and Ci are constants which
may be evaluated with the aid of the boundary
conditions (12) and (13). Their values are
readily found to be

vB(6s—a3) (0®—a?)
Y (eat205) (P —at) + 303"
vB[o:(b—a¥) +o:0*]
ot 200 (BP0 + 300"

a3b°
i as(b*—a?) —i—aaa"’
o0B (b5 —at)b
T (oot 200) (B — )+ 30a0"
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The J, component of the induced current
density in the satellite is, according te Eqs. (5),
(8), and (15),

A
Ji=—ar—+onB
dz

=0’~2[7J.B—CQI:1+Cna—3(1—3 COSZB)j”. (17)

The total current obtained after integrating
this expression over the cross section of the
satellite in x, y plane is

| _Jowd(b—a)¢*kab—a)
T (034-203) (Bt —a?) + 30503

This formula can be considerably simplified for
the special cases of a solid satellite, ¢ =0, and of
a thin-walled satellite, a/b=1—4, where § is a
small number. It can be simplified still more if
the conductivity of the satellite is much larger
than the conductivity of the surrounding space,
o> 03, which very likely is the case for metallic
satellites. For a solid satellite Eq. (18) becomes
in this case

TV B.

(18)

I=203b"nvB. (19)
For a thin-walled satellite it becomes
I=2%g,0muB. (20)

(The last formula is true only if 083> ¢;, which
excludes satellites with extremely thin walls.)

The induction drag exerted upon the satellite
by the earth’s magnetic field may be evaluated
with the aid of Eq. (6), which for the present
choice of coordinates becomes

F=fIXBdr=—if7.Bdr=—if7.Bdr, (21)

where the integral is to be taken over the volume
of the spherical shell with internal radius @ and
external radius b. The substitution of Eq. (17)
into the last integral of Eq. (21) yields after
integration and simplification

Zo'zﬂ‘sba‘l}BeT
f (g3+203) (B*—a?) -]-So'gaaj

(22)

where 7 is the volume of the satellite’s shell.
The acceleration resulting from the magnetic
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drag is then

f i2 < (23)
Y d
and
" " vB? (
= —i2g;—, 24
“38d )

for a solid and an empty thin-walled satellite,
respectively, if ¢:63>05 (d is the density of the
satellite’s material).

IV. CONDUCTIVITY OF SPACE

The derivations of the preceding sections
were based on the assumption that both the
satellite and the surrounding space are macro-
scopic systems which may be characterized by
their respective conductivities. Conductivity,
however, is normally defined only for systems in
which the mean free path of the charge carriers
is much smaller than the dimensions of the field
inhomogeneities. As far as the material of the
satellite is concerned, this mean free path require-
ment is of course well satisfied. In the space sur-
rounding the satellite, however, the mean free
path of the charge carriers is of the order of
kilometers, which greatly exceeds the dimensions
of both the satellite and the inhomogeneities of
the satellite’s field (the field due to charges
induced on the surface of the satellite). Thus, as
far as the surrounding space is concerned, the
system under consideration may be regarded as
a microscopic one, the satellite being merely an
abnormally large polar molecule surrounded by
the particles of the ionospheric gas. Conse-
quently, the problem solved in the preceding
sections must be regarded as a “macroscopic ap-
proximation” of the actual problem. The con-
ductivity of space o3 must, therefore, be under-
stood as an “effective conductivity,” that is, as
the conductivity of a conductor which would
cause approximately the same current in a satel-
lite moving through it, as the current caused in
the satellite by ionospheric particles through
which the satellite is actually moving. In order
to determine the magnitude of this conductivity
it is obviously necessary to consider the inter-
actions between the satellite and the surrounding
particles, or, in other words, to consider the
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problem of the orbiting satellite in its “micro-
scopic approximation.”

From the microscopic point of view the drag
experienced by the satellite is the result of the
transfer of momentum from the surrounding
particles to the satellite. For the approaching
particles the satellite constitutes a scattering
center. Its scattering cross section may be de-
termined by noticing that only a particle whose
kinetic energy is smaller than its potential energy
in the field of the satellite may transfer an ap-
preciable part of its momentum to the satellite
(not counting the direct hits).! From large dis-
tances the satellite may be regarded as an elec-
tric dipole with a dipole moment approximately
equal to dreb®B. With this expression for the di-
pole moment the scattering cross section is readily
found to be

g\B¥® 3;q\Br
(A

m/ v 2\m/ v
where g/m is the charge-mass ratio of the par-
ticles, and the remaining symbols are the same
as before (the thermal motion and the effect
of the earth’s magnetic field on the trajectories of

+he particles are neglected).

The magnitude of the drag is equal to the rate
nf momentum transfer from the oncoming par-
~lag to the satellite. Taking into account the

differences in the scattering cross sections for
different particles, the drag may be expressed as

(25)

AG
F=?=UEZ (S:Nam), (26)
y/

where AG is the momentum transfered, Af is the
time, S; is the scattering cross section for the
particles of type 7, N;is the number density of
these particles, and m; is the mass of each of
these particles. Combining Eqs. (25) and (26) we
now find that the acceleration experienced by
the satellite is approximately given by

By
f=4z (QI'N:');- (27)

Comparing Eq. (27) with Eq. (23) we finally
obtain for the effective value of the conductivity
of space

o372 (V) B (28)

MOTION OF AN ARTIFICIAL SATELLITE

V. DISCUSSION

It may be assumed that in the upper iono-
sphere (about 300 km above the earth’s surface)
the density of the charge carriers is of the order
of 101* m~®, the number of electrons is approxi-
mately equal to the number of ions (each having
a charge of 1.6 X102 amp-sec), and the flux den-
sity of the earth’s magnetic field is of the order of
1075 v.sec/m%* The effective conductivity of
space is in this case, according to Eq. (28),

amp
a2 X 10 2—0,
vem

With this value for the conductivity the total
current induced in a spherical satellite of 1 m?
cross-sectional area moving with a velocity of
about 8 X 10* m/sec is, according to Eq. (19),

I=3%10-%amp.

Thus the current induced in a satellite by the
earth’s magnetic field may have an appreciable
magnitude and may possibly affect the function-
ing of high-sensitivity instruments carried by the
satellite. The measurement of the induced cur-
rent may be desirable for an accurate evaluation
of the induction drag.

The significance of the induction drag as a
factor perturbing the motion of a satellite de-
pends on the relative magnitude of this drag in
comparison with the friction drag. The friction
drag may be estimated with the aid of Eq. (26)
if all the collision cross sections .S; are set equal
to the cross-sectional area of the satellite, and
the summation is taken over all particles im-
pinging on the satellite. The ratio of the induc-
tion to the friction drag may, therefore, be
written, according to Egs. (26) and (27), as

Fu 23 (a:N:) Bb

: 29
Fre 2 (Numa) ® .

where the sum in the numerator is to be taken
over the charged particles only, while the sum
in the denominator is to be taken over all par-
ticles. Thus, the relative significance of the induc-
tion drag increases with increasing percentage of
jonization, and, therefore, this drag becomes

4 See, for instance, Karl Rawer, The Tonosphere (Fred-
rick Ungar Publishing Company, New York, 1957).
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especially important in the uppermost regions
of the ionosphere. Furthermore, the relative
significance of the induction drag increases with
the size of the satellite. In this connection it is
interesting to note that, since the induction drag
is essentially proportional to the volume of the
satellite, while the friction drag is essentially
proportional to the eross-sectional aree of the
satellite, the ratio of the induction to the friction
drag is essentially proportional to the length of
the satellite.

The induction drag may be considered sig-
nificant if it comprises 19, or more of the total
drag. In the uppermost regions of the ionosphere
(above 500 km), the number of neutral praticles
may be assumed to be of the same order as the
number of charged particles, and the average
atomic weight of these particles may be assumed
to be about 16 (essentially oxygen). In this case
Eq. (29) shows that the radius (length) of a
satellite whose induction drag comprises more
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than 19, of the total drag is of the order of 0.5 m.
Neglecting the induction drag may, therefore,
result in too high a value for atmospheric density
at very high altitudes if the density is estimated
from the perturbations of the satellite’s motion.
The errors may be especially large if the satellite
is long and if the average atomic weight of the
particles in the satellite's orbit is small.

In conclusion, it may be added that the induc-
tion effect discussed in this paper is only one of
several electrodynamical effects which may in-
fluence a planetary motion.® These effects may
be of considerable cosmological significance and
may be responsible for certain peculiarities ob-
served in the structure and mechanics of the
solar system. An experimental study of these
effects with the aid of artificial satellites is
therefore highly desirable.

5 Related effects have been recently discussed in K. P.
Chopra, J. Geophys. Research 62, 143 (1957) and R.
]a;g:;’o)w and C. A. Pearse, J. Geophys. Research 62, 413
a g



